
Text2Tracks: Generative Track Retrieval for Prompt-based Music
Recommendation
Enrico Palumbo1,*,†, Gustavo Penha1,†, Andreas Damianou1, José Luis Redondo García1,
Timothy Christopher Heath1, Alice Wang1, Hugues Bouchard1 and Mounia Lalmas1

1Spotify

Abstract
Music recommender systems have traditionally relied on the user’s listening history to provide personalized track recommendations.
However, recent advancements in conversational interfaces powered by Large Language Models (LLMs) have enabled users to provide
highly specific recommendation requests based on language prompts (e.g. “Can you recommend some old school rock ballads to relax?”).
In this context, the track recommendation step is addressed in a generative way, i.e. titles of recommended music tracks are generated
by the LLM by simply predicting the next textual token (e.g. “Led Zeppelin - Stairway to Heaven”). This strategy is sub-optimal for music
items because: 1) it relies on generic text tokenization optimized for words rather than for items, 2) it requires an additional entity
resolution layer to find the actual track identifier, and 3) the number of decoding steps scales linearly with the length of the artist name
and song title, slowing down inference.

In this paper, we frame the task of prompt-based music recommendation as a generative retrieval task, and propose novel effective,
and efficient representations of track identifiers that significantly outperform commonly used strategies. We introduce Text2Tracks,
a generative retrieval model that learns a mapping from a user’s music recommendation prompt to the relevant track IDs directly.
Through an offline evaluation on three datasets of playlists with language inputs, we find that (1) the strategy to create IDs for music
tracks is the most important factor for the effectiveness of Text2Tracks and that we can significantly outperform the artist name and
track name strategy, (2) provided with the right choice of track identifiers, Text2Tracks outperforms sparse and dense retrieval for
prompt-based track recommendation, and (3) several design decisions that were successfully applied to generative retrieval do not
generalize to the music recommendation domain.

Keywords
generative recommendations, generative retrieval, music recommendation, semantic identifiers

1. Introduction
Conversational assistants such as ChatGPT [1] are receiv-
ing massive interest thanks to the groundbreaking abilities
of Large Language Models (LLMs) [2, 3, 4]. A prominent
feature of modern LLMs is their vast knowledge of media
such as songs, films, or books [5]. This world knowledge is
extremely useful in cold-start [6] or conversational recom-
mendation scenarios [7], where user preferences are often
elicited through natural language prompts more than by
tapping into the user’s history of interactions.

Conversational Recommenders (CR) [8, 9] have been pro-
posed as a powerful paradigm to elicit user preferences via
language prompts, enabling complex and specific content re-
quests, multi-turn refinements, and explanations. Typically,
CRs have been implemented as systems comprising many
components [10, 11] such as query understanding, item
retrieval/recommendation, dialogue management, and re-
sponse generation. However, modern autoregressive LLMs
can effectively handle all of these steps in a zero-shot way
by simply predicting the next token [12].

In this context, the track recommendation step, where the
LLM generates track identifiers based on a language prompt,
can be seen as a Generative Retrieval problem (GR) [13]. GR
has shown promising results for question answering and
document retrieval tasks [13, 14]. Unlike sparse and dense
approaches, GR does not rely on pre-computed indexes for
the documents. In GR, a transformer model stores infor-
mation about all the documents in the catalog within its
parameters and directly generates document IDs for an in-
put query. GR is particularly appealing in a conversational

The 1st Workshop on Risks, Opportunities, and Evaluation of Generative
Models in Recommender Systems (ROEGEN@RecSys 2024), October 2024,
Bari, italy
*Corresponding author, email: enricop@spotify.com
†

These authors contributed equally.
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

LM
Backbone

“I’d love some
relaxing bossa
nova music”

ID track 1
ID track 2

…
ID track MDiversified

beam search

ID strategy
preprocessing

(Q1 , 𝜙(t1))
(Q1 , 𝜙(t2))

…
(QN , 𝜙(tk))

Dataset

Pairs of (input, output)

Training1

2

Fine-tuning
Test prompt

Recommended
tracks

(Q1,{t
1,t2, … , tk})

Pre-trained
LLM

“I’d love some
relaxing bossa
nova music”

(artist_name - song_title) 1
(artist_name - song_title) 2

…
(artist_name - song_title) M

Track
index

Entity resolution ID track 1
ID track 2

…
ID track M

Recommended
tracks

Dataset

(Q1,{t
1,t2, … , tk})

Index by title

b

a

Test prompt

Figure 1: (a) Pre-trained LLMs deal with prompt-based music
recommendation by generating the recommended artist name
and song title, which are then resolved against an index to find
the actual track identifiers. (b) Text2Tracks is a generative track
retrieval model composed of a component that represents tracks,
i.e. the ID strategy 𝜑 that maps from a track to its ID, and a back-
bone LM that is fine-tuned with pairs of music recommendation
queries and track IDs. At test time Text2Tracks generates a set of
recommended tracks using a diversified beam search strategy.

interface, as it opens the door to a single fine-tuned LLM
handling all aspects of conversational recommendations,
generating item identifiers in the same way it generates
other textual content, such as follow-up questions, and ex-
planations.

https://creativecommons.org/licenses/by/4.0/deed.en

A critical question in the GR scenario is how to best repre-
sent item identifiers. In the music domain, pre-trained LLMs
typically handle this step by generating the artist name and
song title in plain text, as this is the most common repre-
sentation found in their pre-training web data (Figure 1a).
Although this approach is intuitive and works well in a
zero-shot scenario, modeling tracks through their names
has several shortcomings. First, artist and track names do
not generally convey meaningful information about the un-
derlying items, i.e. two songs might have a similar title but
a completely different genre, style, and mood. Second, given
the same artist and song name, finding the corresponding
track identifier to play requires an additional entity reso-
lution step, which can be non-trivial, especially for songs
that come in many different versions (e.g. live, remastered,
acoustic, cover). Third, representing track items by their
names requires a number of decoding step that is propor-
tional to their length, which can be very long, making the
prediction slow and expensive.

In this paper, we propose to model the prompt-based
music recommendation task, where user preferences are ex-
pressed through broad-intent natural language queries (e.g.
‘Can you recommend some upbeat rock tracks to dance to?’),
as a generative retrieval problem. We propose an approach
to generative track retrieval called Text2Tracks. Compared
to the tasks GR has been tested on so far (document and
passage retrieval, question answering), our domain poses
a new set of challenges. In our domain, the retrieval units
are music tracks typically associated with limited textual
descriptions such as just the artist name and track title [15].
Also, music recommendation datasets have a stronger popu-
larity bias with respect to document retrieval and question
and answering datasets such as MSMarco [16]—hence, the
problem is more about recommending the most canonical
and representative items for a certain prompt rather than
about semantic matching. Then, we focus on the problem of
finding effective and efficient identifiers for music items for a
generative retrieval model in the context of a prompt-based
music recommendation system.

The proposed Text2Tracks uses the hierarchical structure
available in the music domain—where tracks are linked to
artists—for representing each music track, i.e. the ID strat-
egy. To learn how queries relate to tracks, Text2Tracks lever-
ages a language model backbone that maps from queries to
track IDs. To better understand the capabilities of Text2Tracks,
in this paper we address the following research questions:

RQ1 Which ID strategy is better suited for the generative
retrieval approach to prompt-based music recom-
mendation?

RQ2 Is Text2Tracks more effective than dense and sparse
baselines for prompt-based music recommendation?

RQ3 Do the gains coming from previously proposed de-
sign decisions for generative retrieval models—constrained
decoding, list target optimization, indexing step, and
use of synthetic queries—generalize to the domain
of music tracks?

Our findings reveal that (1) leveraging an ID strategy that
takes into account the hierarchy of music tracks belonging
to each artist and adding artists as special tokens provide the
best results, outperforming the commonly used artist name
and track title approach by 31% in Hits@10 while reducing
the number of decoding steps by 7.5 times; (2) provided with
this ID strategy, the generative retrieval Text2Tracks outper-
forms dense and sparse retrieval baselines for prompt-based

music recommendation with relative gains between 100%
and 170% of Hits@10 for the track granularity and between
30% and 100% for the artist granularity; and (3) a number of
previously proposed model design decisions for generative
retrieval do not lead to effectiveness gains in this domain,
stressing the importance of ad-hoc experimentations for
recommendation problems and the music domains.

The key contributions of this work are the problem fram-
ing, proposing to address prompt-based music recommen-
dation as a generative retrieval problem; id strategies, intro-
ducing a number of new techniques to model track identi-
fiers in a generative retrieval setting; experimental analysis,
showing that this approach 1) outperforms typically used
strategies for modeling track IDs, 2) is more effective than
other track retrieval strategies (i.e. sparse, dense) thanks to
the ability of predicting more canonical and popular tracks,
and 3) does not benefit from other techniques that work well
for generative retrieval in question answering and passage
retrieval tasks.

The remainder of the paper is structured as follows. In
Section 2 we present related work in the prompt-based rec-
ommendation and generative retrieval research areas. In
Section 3 we formalize the task and describe the model ar-
chitecture. In Section 4 we explain the experimental setup
and provide implementation details. In Section 5 we report
and comment on the results of our experiments. In Section 6
we draw the conclusions and describe future work.

2. Related Work
Prompt-based Recommendation Language-based pref-
erences and textual inputs have always been a core part of
recommender systems. Content-based recommender sys-
tems [17] have been around for several decades, matching
user profiles with item textual metadata such as descrip-
tions, reviews, tags. LLMs have further increased the atten-
tion toward the elicitation of language-based preferences
for items, thanks to their ability to understand complex
requests that rival traditional item-based recommenders,
especially in cold-start scenarios [6]. Retrieving and recom-
mending tracks for text-based inputs is inherently challeng-
ing [18, 19, 20]. Although music tracks can be described in
many ways (e.g. genres, time, writer, artist, mood, speed,
instruments, contextual activity, time of the day, etc), we typ-
ically have only a limited amount of metadata information
describing each track. Additionally, users might want to re-
fine the original query after examining the retrieved tracks,
leading to the more challenging task of conversational rec-
ommendation [10]. Conversational recommendation is a
type of conversational information-seeking activity [8] and
is defined as “a software system that supports its users in
achieving recommendation related goals through a multi-turn
dialogue” [10]. Conversational recommenders have the po-
tential to achieve multiple goals such as better eliciting the
user information need, recommending certain items, ex-
plaining the recommendations, answering questions about
the items, etc.

CRs have been typically implemented by pipelines with
many components [10, 11] such as query understanding,
item retrieval & recommendation, dialogue management,
and response generation. With the breakthroughs of LLMs
that can potentially do all those tasks, end-to-end approaches
have become more popular [21, 22, 12]. One particularly
challenging aspect of conversational recommendation with

LLMs is item retrieval, where broad descriptions must be
matched against item collection. A common strategy in
generative models is to predict the title of the item in an
autoregressive fashion: “Led” → “Led Zeppelin” → ... →
“Led Zeppelin - Stairway to Heaven” [12, 23], and match the
generated titles against the item collection afterward. Even
though this strategy works with API-based LLMs, more
effective and efficient solutions can be achieved when fine-
tuning a model for the prompt-based recommendation task.
While research in this space is progressing at unprecedented
speed, none of these works models the prompt-based music
recommendation task as a generative retrieval problem.

Generative Retrieval Traditional retrieval systems have
historically relied on keyword matching, and word frequen-
cies to identify relevant documents for a given query [24].
These systems lack a semantic understanding of words, and
documents are not matched if they use different words
to express the same concept [25, 26]. Approaches to im-
prove semantic matching between queries and documents
in information retrieval have largely benefited [27] from
breakthroughs in natural language processing achieved by
transformer-based models [28], such as BERT [29] and T5 [30].
For the retrieval task, transformer-based models have been
used to augment documents [31], learn representations for
sparse retrieval methods [32, 33], and create Bi-encoders [34,
35, 36], i.e. models that encode the query and the document
in a shared vector space where retrieval is performed as
a nearest neighbor search. Bi-encoders have to encode all
the information necessary in a single representation space,
which can be suboptimal [37]. Moreover, Bi-encoders have
limited robustness to zero-shot scenarios and can be outper-
formed by traditional lexical matching approaches [38, 39].

Generative retrieval has emerged as a new promising
paradigm for semantic search. In GR, transformers act as
differentiable search indexes [40, 14, 41, 42], learning to
generate relevant document identifiers (IDs) for a specific
query. Unlike Cross-encoders, the outputs of the models
are not relevance scores for pairs of query and documents,
but document IDs that are relevant to the input query. This
way, the only input to GR is the query itself. Also unlike
Bi-encoders, GR does not output embeddings that are later
used to perform similarity calculations; it directly predicts
document IDs. Because of the output space, all documents
in the collection need to be part of the training set of GR
models, as their IDs need to be learned and stored in the
model weights, leading to challenges of scalability [43] and
ingestion of new documents [44].

Another key point of GR models is assigning IDs for each
document in the collection [13, 45, 46, 47]. Adding one new
token to the vocabulary that represents each document in
the collection can work for smaller collections, but it will
quickly become intractable with reasonably sized collections.
For this reason, it is crucial to adopt ID strategies that help
the model learn the structure of the output space.

Previous work on GR focus on text-rich domains where
documents are long and the focus is on semantic matching.
In this paper, we propose to frame and study the problem
of finding effective ID strategies, focusing on the music
domain which has its own set of challenges compared to
typical benchmarks.

3. Method
We start by formally defining prompt-based music recom-
mendation as a generative track retrieval task, followed
by the main components of the Text2Tracks model. Fig-
ure 1b displays a diagram of the model, showcasing how
the training dataset 𝒟 is first pre-processed into pairs of
training instances using an ID strategy 𝜑 to represent the
items. Then, the Language Model (LM) is fine-tuned and
at test time uses diversified beam search to generate track
recommendations. We first describe how the ID strategies
work before introducing the LM backbone.

3.1. Prompt-based Music Recommendation
The modeling assumption of this paper is that prompt-based
music recommendation can be framed as a generative track
retrieval task. The track retrieval task is defined as retrieving
a set of tracks relevant to a given music recommendation
query. Formally let 𝒟 = {(𝑄𝑖, {𝑡1, 𝑡2, ..., 𝑡𝑘})}𝑁𝑖=1 be a
dataset composed of relevance labels for music recommen-
dation queries, where 𝑄 is the query containing the music
recommendation information need and {𝑡1, 𝑡2, ..., 𝑡𝑘} are
the tracks that are relevant for this query. For the con-
versational recommendation setting, 𝑄𝜏 = {𝑢0, ..., 𝑢𝜏} is
the set of utterances from the user until the turn 𝜏 of the
dialogue. The task is then to learn a function 𝑓(𝑄) that
maps from a query 𝑄 to a subset of the entire collection of
tracks 𝒯 in a retrieval-like fashion: 𝑓(𝑄) →{𝑡1, 𝑡2, ..., 𝑡𝑚},
where 𝑚 ≪ |𝒯 |. Following the GR approach [13], we pose
that 𝑓(𝑄) is a transformer model with a decoder layer that
directly generates the subset of relevant track IDs (see Sec-
tion 3.3). In this setup, a crucial question is how to model
track IDs.

3.2. Text2Tracks: ID strategies
The ID strategy is responsible for generating a string identi-
fier for each item in the collection 𝒯 . We explore three types
of IDs: based on the content of the item, based on integers,
and learned ones. Figure 2 describes the three classes of
approaches at a high level.

3.2.1. Content-based

This category of IDs uses the textual content of the item as an
identifier. The advantage of this type of strategy is that the
knowledge stored in the weights of the LM backbone model
from its pre-training procedure can be leveraged, as the text
metadata is also in the space of natural language. For a single
item, each metadata category 𝑀 has a value. For the tracks
𝑡𝑖, we have the artist name (𝑀1) and track title (𝑀2) meta-
data categories,1 which leads to the artist-name-track-title
approach: 𝜑(𝑡𝑖) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑣𝑎𝑙𝑢𝑒𝑀1(𝑡𝑖), 𝑣𝑎𝑙𝑢𝑒𝑀2(𝑡𝑖)). Ta-
ble 1 shows an example of an item and its respective artist-
name-track-title representation, where each value of the
available metadata is concatenated.

3.2.2. Integer-based

This category of IDs uses integer identifiers to represent the
items in the catalog. The most naive one is to assign random

1When available, other metadata information could be used to generate
a content-based representation, for example, the genres of the artist
and track.

Track_ID
LM backbone

relaxing bossa
nova playlist

ID_track
Beam search

Playlist1 title
Track 1
Track 2

…
Track N

ID strategy

Metadata M1: value1

Metadata M2: value2

…
Metadata Mn: valuen

Input Output
Playlist1 title ID_Track1
Playlist1 title ID_Track2

…
PlaylistN title ID_TrackM

Playlist dataset LM training dataset

Content-based

2

Fine-tuning
Test query Output playlist

“value1_ value2 … _ valuen”

Item

ID

Metadata M1: value1

Metadata M2: value2

…
Metadata Mn: valuen

Integer-based

“M1[value1] _ M2[value2] … _ Mn[valuen]”

Metadata M1: value1

Metadata M2: value2

…
Metadata Mn: valuen

M1: {value1 : int1, …}
M2: {value2 : int2, …}

…
Mn: {valuen: intn, …}

Learned

Embedding Embedding t1

Item t1 1

2 3

“C[1] _ C[2] _ C[3]”

Figure 2: The three categories of ID strategies using “_” as a separator. Content-based strategies use textual metadata
associated with the item. Integer-based approaches use random integer values for each metadata, potentially leveraging the
hierarchy of metadata available. Learned approaches go from embeddings that represent the item to hierarchically structured
tokens.

integers for each item in the collection: track-int. When
using this strategy we do not add the IDs to the vocabulary
of the LM backbone model, as adding millions of tokens to
the vocabulary does not scale practically. This means that
the LM backbone model will split the IDs into several tokens,
and needs to learn to output tokens that when combined
represent an item.

To leverage all available metadata we propose to have
separate integers to represent each metadata value, which
allows for tokens to be shared across items with the same
metadata values. Given that the artist and track metadata
categories are hierarchical, i.e. tracks belong to a main artist,
we first generate random integers for the artist metadata
values (𝑀1) and then we sequentially count in order of
appearance in the training dataset the track name metadata
values (𝑀2) of that artist. So for example, if the artist𝐴1 has
three different tracks 𝑡1, 𝑡2, 𝑡3 they would be represented
as follows: “1_1”, “1_2”, and “1_3”2. We refer to this strategy
as artist-int-track-seq.

To facilitate learning a representation for certain items,
we can also add a limited number of tokens related to a
metadata category to the vocabulary. In artist-iid-track-seq
we add the top-K popular artist’s integers in terms of appear-
ance in the training set. This allows the model to represent
such artists with a single token instead of the combination of
the tokens that the tokenizer would otherwise generate. The
remainder of the artists (not in the top-K) get their tracks
represented as in the previous approach artist-int-track-seq.

3.2.3. Learned

This category of IDs learns how to discretize the embed-
dings that represent each item in the collection. Ideally,
similar items in the embedding space share more tokens
after this discretization is done by the learned approach.
So for example, if two tracks 𝑡1, 𝑡2 share the same genre, a
learned approach could create the following hierarchy in
their tokens, by using a shared token “<0>” in the beginning:
“<0><1>” and “<0><2>”. Learned strategies have also the ben-
efit of controlling how many tokens each track is composed
of, as well as the number of tracks that have the same tokens.
While the other approaches in the paper uniquely identify
each item with an ID, learned strategies can hash multiple

2In practice, following [45] we start the counts for artists and tracks
within that artist from 1000 to avoid problems with unique tokens and
mixing the representations of tracks that would become subsets of
other track ids.

tracks with the same tokens,3 which allows for compression.
We test two different ways to encode each item in an

embedding space that is used by the learned ID strategy
afterward. The first approach is text-based. For each track, it
creates a textual representation for it by concatenating the
train set queries where the track appears. To go from the
text to an embedding it uses a sentence encoder model. For
example, if a track appears in three train set queries called
rock classics 00s, top hits 00s and guitar solos to learn, we con-
catenate the titles in a single string rock classics 00s, top hits
00s, guitar solos to learn and then generate the embedding
with a sentence encoder model [48]. The second approach
is cf-based, and it relies on collaborative filtering to create
item embeddings. Each query in the training set leads to
a set of tracks, which can be thought of as a user. The co-
occurrence of tracks for different queries (users) is leveraged
by collaborative filtering models that learn representations
based on sequences of items.

For each of the embedding space representations, we pro-
pose to use two different algorithms to discretize them. The
first is a hierarchical clustering approach, in line with pre-
vious work [40], where the embedding space is recursively
clustered into groups using a KMeans algorithm [49]. A
root cluster is assigned a dummy token, and then, at each
iteration, tokens are appended to the item representation
depending on the cluster the item belongs to, leading to a
sequence of 𝑚 tokens where 𝑚 is the maximum depth of
the hierarchical clustering tree.

The second discretization algorithm proposed is inspired
by the use of sparse coding for word sense induction [50].
We learn a sparse coding [51] for each item, which is an
approximation of the item 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑡) as a sparse linear
combination of a much smaller set of unit vectors, called
the dictionary. After specifying the size of the dictionary,
𝑠, and the number of non-zero coefficients in each coding,
𝑐, we use a standard dictionary learning algorithm [52] to
simultaneously learn the vectors, 𝑣1 . . . 𝑣𝑠, in the dictionary
and the coefficients of the coding for each track, 𝑎1 . . . 𝑎𝑠,
such that 𝑡 ≈ 𝑎1𝑣1 + . . .+ 𝑎𝑠𝑣𝑠 while keeping the magni-
tude of 𝑎1, . . . , 𝑎𝑠 small. Ordering the non-zero coefficients
from largest to smallest magnitude, |𝑎𝑖1 | ≥ . . . ≥ |𝑎𝑖𝑐 |,
we obtain an ID for the track as < sgn(𝑎𝑖1)𝑖1 > . . . <
sgn(𝑎𝑖𝑐)𝑖𝑐 >. This gives each track an ID with 𝑐 integer
tokens from a lexicon of 2𝑠 (𝑠 positively signed tokens and

3At test time, if the ID has multiple tracks associated with it, we select
the most popular one. It is also possible to uniquely identify each item
with learned strategies by adding another disambiguation token.

Table 1
Examples of the IDs generated for each strategy to represent a
track for Text2Tracks. “<” and “>” delimiters indicate that the
string is added to the vocabulary of the model as a new indepen-
dent token. UI indicates if the strategy uniquely identifies each
track. Underline indicates track name and dashed underline in-
dicates artist name.

Category ID strategy 𝜑 UI Example

content artist-name-
track-title

✓ “The Beatles_Let It Be”

integer
track-int ✓ “1001”
artist-int-track-
seq

✓ “1001_1001”

artist-iid-track-
seq

✓ “<1001>_1001”

learned dictionary-
encoding
hierarchical-
clustering

✗ “<0><2><3>”

𝑠 negatively signed ones) possible tokens with the valuable
property that two tracks whose IDs start with the same sub-
sequence of tokens are likely to have similar representations
in the original embedding space.

3.3. Text2Tracks: LM backbone
We propose to fully parameterize the retrieval function 𝑓(𝑄)
with a differentiable seq2seq transformer model. Following
the intuition in [40], we hypothesize that all the necessary
information for the generative track retrieval can be learned
and stored within the backbone language model’s parame-
ters.

3.3.1. Training

When fine-tuning the LM backbone, each train set query
𝑄 generates 𝑘 training instances, where 𝑘 is the number
of relevant tracks {𝑡1, 𝑡2, ..., 𝑡𝑘} for that query. Each track
is first mapped to a textual ID by one of the ID strategies,
and then the model is trained with the pairs of (𝑄,𝜑(𝑡)).
For the inputs where we have multiple conversational turns,
we concatenate the dialogue utterances into a single query:
𝑄 = 𝑐𝑜𝑛𝑐𝑎𝑡({𝑢0, ..., 𝑢𝜏})

An alternative way of fine-tuning the model is to use the
entire set of relevant tracks for each training instance. We re-
fer to this as list targets, which trains the LM backbone with
instances of (𝑄, 𝑐𝑜𝑛𝑐𝑎𝑡(𝜑(𝑡1), 𝜑(𝑡2), ..., 𝜑(𝑡𝑘))), where 𝑐𝑜𝑛𝑐𝑎𝑡
concatenates the track IDs using a separator token.

3.3.2. Data augmentation

To increase the amount of training data we propose two
ways of generating additional training instances: synthetic
queries and the indexing step. To generate additional syn-
thetic queries, we rely on playlist descriptions. For a given
description, we choose from 2–4 non-stop words at ran-
dom to generate a query. The synthetic queries could al-
leviate lexical gaps by describing the tracks with different
terms. The indexing step generates additional training in-
stances that go from the concatenation of the available
metadata values (artist name and track title) to the IDs:
(𝑐𝑜𝑛𝑐𝑎𝑡(𝑣𝑎𝑙𝑢𝑒𝑀1(𝑒), 𝑣𝑎𝑙𝑢𝑒𝑀2(𝑒)), 𝜑(𝑡𝑗)). The additional
training instances can help the model for queries based on
artist names.

Table 2
Statistics of the datasets. u. stands for unique.

Curated MPD100k CPCD

queries (train) 75k 80k 448
queries (dev) 771 10k -
queries (test) 523 1k 468
u. queries 74k 29k 914
u. artists 140k 53k 3902
u. tracks 504k 258k 7353
avg. tracks query 12.69 15 15
% test tracks in train 100% 70.50% 65%

3.3.3. Inference

At inference time, track IDs are generated via diversified
beam search [53] for the given prompt. For each group,
beam search is applied to generate track IDs; however, there
is a penalty for homogeneity across the generated tokens
from different groups. This means that the model is pe-
nalized (as controlled by the homogeneity hyperparameter)
when the output tokens are not diverse. Diverse beam search
allows Text2Tracks to diversify the set of predictions, which
is crucial for track recommendation. Optionally, at inference
time the model can also resort to constrained decoding [41]
to avoid the generation of invalid track IDs. All the valid IDs
are added to a prefix trie that constrains the LM generation.

4. Experimental Setup
Datasets To answer our three research questions we rely
on three datasets: MPD, Curated, and CPCD (statistics shown
in Table 2). For the first two datasets, we treat the titles of
the playlists as a proxy for the queries 𝑄 and the tracks
inside the playlist as the relevant tracks for that query. The
reasoning behind relying on playlist data is that playlist ti-
tles closely resemble broad-intent music searches (e.g. chill
music for studying).

The Curated dataset comes from a popular music stream-
ing platform. While the train and evaluation queries are
a subset of user-generated playlists and tags that describe
the tracks, the test queries are a selected set of playlists
created by a team of professional music editors in the case
of Curated. We guarantee that all the tracks in the test
set appear in the train set, and enforce that the queries of
the test playlists are not exact matches with the train set
queries.

The MPD dataset is a random subset of 100k playlists sam-
pled from the Spotify Million Playlist Dataset Challenge4.
The playlists have been created by users on the Spotify
platform between January 2010 and October 2017.

The third dataset is the Conversational Playlist Curation
Dataset (CPCD),5 a dataset that has been created to evalu-
ate conversational music recommendation systems using a
human-human methodology, i.e. one annotator plays the
role of the user, and one of the system [11]. We apply on
CPCD conversational queries a pre-processing step using
GPT3.5 to replace requests for specific artists with more
generic music descriptors. We do so because we are not

4The MPD dataset is available at https://www.aicrowd.com/challenges/
spotify-million-playlist-dataset-challenge

5The CPCD dataset is available at https://github.com/
google-research-datasets/cpcd/tree/main

https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
https://github.com/google-research-datasets/cpcd/tree/main
https://github.com/google-research-datasets/cpcd/tree/main

interested in evaluating the models for narrow queries tar-
geted at specific artists, but for the effectiveness in track
recommendation on broader exploratory intents [54]. For
instance, a query such as “Hey there! I’m hoping to make an
"oldies but goodies" playlist. Can you help? Could you incor-
porate some Beach boys, The Temptations and similar artists?”
becomes “I’m hoping to make an oldies but goodies playlist.
Can you help? I like classic 60s music. Could you incorporate
some iconic bands from that era and similar artists?”. We fol-
low the setup proposed in [11] and concatenate the different
turns of the conversations for the track retrieval task.

Baselines & Implementation Our first baseline, Popular-
ity, retrieves the most popular tracks regardless of the query.
For the dense (Bi-encoder) and sparse (BM25) baselines, we
represent each track by the titles of playlists they appear in
the train set. So for example if 𝑡𝑖 appears in the playlists
“rock”, “metal” and “guitar solos” we represent 𝑡𝑖 by their
concatenation: “rock, metal, guitar solos”. For BM25 [55] we
resort to the default hyperparameters and implementation
provided by the PyTerrier toolkit [56]. For the Bi-encoder𝑧𝑠
model, we rely on the SentenceTransformers [48] model
releases.6 The library uses Hugginface transformers for
the pre-trained models such as MPNet [57]. Specifically,
we employ the pre-trained model all-mpnet-base-v2. When
fine-tuning Bi-encoder𝑓𝑡 we rely on the MultipleNegatives-
RankingLoss.

Text2Tracks uses a T5 [58] base model that was instruction-
tuned, known as Flan-T5 [59]. We rely on the Hugginface
library to fine-tune it, and unless otherwise stated we use
the flan-t5-base pre-trained model. We fine-tune it for a
total of 20 epochs, with a learning rate of 5𝑒−4 and a batch
size of 64. For the ID strategy artist-iid-track-seq we add
the top 50k artists as tokens to the vocabulary. Unless oth-
erwise stated, Text2Tracks is using the artist-iid-track-seq
representation and does not use constrained decoding, list
targets, indexing step and synthetic queries. For the text-
based learned methods for representing IDs, we rely on
the all-MiniLM-L6-v2 model from SentenceTransformers
to encode the textual representation of the tracks. For the
cf-based learned methods, we rely on word2vec model [60]
to generate embeddings by training it on the sequences of
tracks. For KMeans and the dictionary learning approach,
we use the scikit-learn library.7

Evaluation We evaluate our models using the Mean Av-
erage Precision (MAP) and the number of relevant items
(Hits), with a cut-off thresholds of 10. We follow the pes-
simistic assumption that only the tracks in the test playlist
are relevant, in line with most evaluation setups in the rec-
ommender systems literature [61]. Hence, the effectiveness
scores are only a lower bound estimate, due to the lack of
relevance judgments of all the recommended items. We
use Student t-tests with Bonferonni correction and a confi-
dence level of 0.95 to calculate the statistical significance
of different models. We calculate the metrics in both the
track granularity, i.e. relevant tracks were retrieved at the
top positions, and the artist granularity, i.e. relevant artists
were retrieved at the top positions regardless of the specific
tracks returned.

6https://www.sbert.net/docs/pretrained_models.html
7https://scikit-learn.org/stable/

5. Results
We now go over the results to our three research questions.

5.1. ID strategies (RQ1)
Our first research question is on the “comparison of differ-
ent track ID strategy representations”. In Table 3 we see the
results for the different strategies to represent IDs. Our
results show that the ID strategy is a deciding fac-
tor for the effectiveness of Text2Tracks, achieving the
best performance with artist-iid-track-seq. When using
artist-iid-track-seq, tracks from the same artists share tokens,
and at prediction time the model is forced to first retrieve
the relevant artist, and within that artist predict the relevant
track. The results show that the artist→track hierarchy pro-
vided by artist-iid-track-seq is better than trying to learn a
hierarchy from the collaborative-filtering information (rows
6 and 7 of Table 3) or from the textual information (rows 4
and 5 of Table 3).8 By comparing artist-iid-track-seq with
artist-int-track-seq we see that adding the top 50k artists as
independent tokens to the vocabulary increases the model’s
effectiveness.

Besides the learned cf-based approaches, the worst-performing
ID representation is track-int which does not add any prior
knowledge to the initial representation of the tracks, and
requires the model to learn how queries match groups of
tokens (on average 4 tokens) that represent the tracks.
When using artist-name-track-title, the LM can leverage the
“knowledge” stored in its weights regarding the items, e.g.
it could already know that the word “rock” is semantically
close to the rock band “ACDC”. Even though the number
of tokens per track is high when using artist-name-track-
title (∼15 tokens on average), it is still able to outperform
track-int.

Overall, our best strategy artist-iid-track-seq outperforms
the commonly used strategy in pre-trained LLMs artist-
name-track-title by 31% in Hits@10, while being much more
efficient (2 decoding steps vs an average of 15 decoding
steps).

5.2. Text2Tracks effectiveness (RQ2)
To answer our second research question on “the effectiveness
of Text2Tracks” we display in Table 4 the results for the task
of generative track retrieval for the Curated, MPD100k and
CPCD datasets. We see that Text2Tracks outperforms the
baselines for all the three datasets with statistical signifi-
cance, for both prediction granularities (artist and track lev-
els). This answers our RQ2 positively, indicating that
Text2Tracks is an effective approach for track retrieval,
outperforming sparse and dense baselines with rela-
tive gains between 100% and 170% of Hits@10 for the
track granularity and between 30% and 100% for the
artist granularity. The consistency of the improvements
across the three datasets show that Text2Tracks is effective
both when playlist titles are used as a music recommenda-
tion prompts (Curated, MPD100k) and with more complex
conversational music recommendation queries (CPCD).

8We leave as future work the exploration of better representation spaces
to learn ID strategies upon, such as more sophisticated collaborative-
filtering methods for learning embeddings, or embeddings coming
from the audio information of a track.

https://www.sbert.net/docs/pretrained_models.html
https://scikit-learn.org/stable/

Table 3
Results of different ID strategies for the Curated dataset (RQ1). Bold denotes the highest effectiveness and superscripts
mean statistical significance against the respective ID strategy using Student t-tests with Bonferroni correction. Tracks p.
ID is the number of tracks each ID represents on average. Tokens p. track is the average number of tokens the tracks have
when tokenizing their IDs. Vocab. size indicates the number of tokens after we added the new tokens to the existing 32.1k
vocabulary.

Category ID strategy
Tracks
p. ID

Tokens
p. track

Vocab.
size

Hits@10 MAP@10

track artist track artist

0 content artist-name-track-title 1.0 14.73 32.1k 0.18245 0.402145 0.02545 0.08914567

1

integer
track-int 1.0 3.93 32.1k 0.1404 0.23945 0.017 0.03945

2 artist-int-track-seq 1.0 6.57 32.1k 0.18545 0.340145 0.02745 0.09014567

3 artist-iid-track-seq 1.0 5.91 82.1k 0.239145 0.350145 0.0341456 0.1200124567
4

learned

cf-based-hierarchical-clustering 1.8 4.00 147.8k 0.042 0.134 0.006 0.016
5 cf-based-dictionary-encoding 3.6 4.00 32.6k 0.076 0.141 0.008 0.022
6 text-based-hierarchical-clustering 1.3 4.00 101.6k 0.17045 0.32145 0.02045 0.056145

7 text-based-dictionary-encoding 1.7 4.00 32.6k 0.18045 0.358145 0.02445 0.060145

Table 4
Results for the effectiveness of Text2Tracks (RQ2). Bold denotes
the highest effectiveness for the dataset and superscripts mean
statistical significance against the respective model using Student
t-tests with Bonferroni correction.

Hits@10 MAP@10

Model track artist track artist

Curated

0 Popularity 0.019 0.050 0.003 0.007
1 BM25 0.1010 0.1970 0.0150 0.0540

2 Bi-encoder𝑧𝑠 0.065 0.1820 0.010 0.0410

3 Bi-encoder𝑓𝑡 0.1190 0.2070 0.0130 0.0540

4 Text2Tracks 0.2390123 0.3500123 0.0340123 0.1200123

MPD100k

0 Popularity 0.12123 0.32523 0.01423 0.06123

1 BM25 0.07123 0.25223 0.00823 0.04423

2 Bi-encoder𝑧𝑠 0.023 0.159 0.002 0.027
3 Bi-encoder𝑓𝑡 0.022 0.140 0.002 0.024
4 Text2Tracks 0.3300123 0.5070123 0.0380123 0.1130123

CPCD

0 Popularity 0.002 0.052 0.001 0.006
1 BM25 0.1310 0.2650 0.0220 0.0470

2 Bi-encoder𝑧𝑠 0.1480 0.34001 0.0250 0.06001

3 Bi-encoder𝑓𝑡 0.222012 0.477012 0.034012 0.081012

4 Text2Tracks 0.5380123 0.6130123 0.0470123 0.1080123

Why is Text2Tracks more effective than traditional
retrieval baselines? We hypothesize that the gains of
Text2Tracks over traditional sparse and dense baselines come
from two main reasons. The first is the lack of textual in-
formation for the tracks in such datasets besides the track
and artist names. This way all models rely exclusively on
the train queries and predicting which track is relevant di-
rectly allows for more expressiveness than using similarity
between the representations of the query and tracks. See
for example the predicted tracks from Text2Tracks and Bi-
encoder𝑓𝑡 for the query “Christmas Hits” on the first row
of Table 5. While Text2Tracks retrieves 3 relevant tracks,
Bi-encoder𝑓𝑡 is not able to find a relevant artist or track in
the top 5 positions. The second one is that Text2Tracks can
distinguish between popular and non-popular items based
on the occurrence of such tracks in the training set. While
tokens representing popular artists and tracks are more

Table 5
Example of tracks recommended by the proposed Text2Tracks
compared to the Bi-encoder𝑓𝑡 model for the ‘Christmas hits’
query. In dashed underline we have the predicted artists and
tracks of the models that are relevant according to the ground-
truth MPD100k playlists. Text2Tracks can recommend more
canonical and relevant tracks and artists in the first positions of
the list.

Top 5 tracks predictions

Text2Tracks Bi-encoder𝑓𝑡

Mariah Carey - All I Want [...] Marty Stuart - Even Santa [...]
Wham! - Last Christmas Cascada - Last Christmas
Bing Crosby - White Christmas Reba McEntire - Silent Night
Andy Williams - It’s the Most[...] Jonny Lang - Santa Claus Is [...]
José Feliciano - Feliz Navidad Gladys Knight & T. P. - When [...]

likely to be generated by Text2Tracks, the textual represen-
tations of tracks for traditional retrieval methods cannot
distinguish two tracks with different popularity values. For
example, the first track retrieved for the “Christmas Hits”
query is “Mariah Carey - All I Want For Christmas Is You”, a
frequent item in the training set.

How does Text2Tracks diversify predictions and how
does diversity affect effectiveness? The homogeneity
parameter of diverse beam search allows for control of how
much the generation of similar predictions across different
beam search groups is penalized [53]. We study the effect
that this parameter has on the model’s effectiveness and on
the diversity of the recommended tracks, measured as the
Shannon entropy of the list of predicted artists (Figure 3).

We observe that the artist entropy (i.e. diversity) mono-
tonically increases when the homogeneity penalty increases,
while the effectiveness has a local maximum at ≈ 0.25. One
of the appealing features of Text2Tracks is that it is straight-
forward to sacrifice some effectiveness to increase diversity
or vice versa based on the use case at hand.

5.3. Model design choices (RQ3)
Our third research question explores four previously pro-
posed model design decisions for generative retrieval, namely
constrained decoding [41], list target optimization [42], in-
dexing step [40], and use of synthetic queries [62], general-
ize to track recommendation.

0.05

0.10

0.15

0.20

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5
Homogeneity penalty

H
its

@
10

A
rtist entropy

Figure 3: The effect on Hits@10 () for the track granularity
and on the diversity of the artists (▲) when increasing the ho-
mogeneity penalty hyperparameter, which applies a penalty for
generating tokens that were selected in other beam search groups
at prediction with Text2Tracks for the Curated dataset.

Table 6
Results of different Text2Tracks design choices for the Curated
dataset (RQ3). Superscript ↓ means statistically worse results
compared with Text2Tracks baseline using Student t-tests with
Bonferroni correction.

Hits@10 MAP@10

Design choice track artist track artist

Text2Tracks 0.239 0.350 0.034 0.120
w. constr. decoding [41] 0.245 0.354 0.035 0.121
w. list targets [42] 0.078↓ 0.229↓ 0.013↓ 0.040↓

w. indexing step [40] 0.231 0.333 0.031 0.121
w. synthetic queries [62] 0.243 0.348 0.032 0.109

First, we look into whether constraining the output space
to valid IDs only [14, 41] improves the effectiveness of
Text2Tracks. We see in Table 6 that there is no statistically
significant difference between the model with and without
constrained decoding. By checking the model predictions,
we see that around 80% of them are valid IDs. The low
percentage of ID hallucinations indicates that constrained
decoding does not play an important role here, and simply
returning more IDs with diversified beam search is enough
to reach the best effectiveness.

The second modification we evaluate is training the Text2Tracks
with lists targets, similar to [42]. As described in Section 3.3
the model is trained to generate the entire playlist in a single
sequence. We see in Table 6 that training with list targets
significantly degrades model effectiveness.9

The third variation is a data augmentation strategy that
resembles the DSI’s indexing step [40]. As described in
Section 3.3 we add training instances that go from the artist
name and track title to the track IDs, with the hypothesis
that this could help mapping knowledge learned during the
LM pre-training to the track IDs space. However, we do not
observe a significant difference when using the indexing
step against not using them in Table 6.

Finally, we analyze the use of synthetically generated
queries [62, 43] to augment the training data. We use the
playlist description of the train playlists as the input text
for the method to generate synthetic queries.10 For exam-

9A number of additional unsuccessful experiments with list targets
were performed: completing train playlists that do not have at least 15
tracks with tracks returned by the Bi-encoder model for the playlist,
generation of multiple prediction lists at test time, and combining them
with RRF [63], as well as shuffling the order of the tracks inside each
playlist for different epochs.

10We leave the study of more sophisticated models for generating syn-
thetic queries for tracks as future work. For example, methods that
rely on large language models to generate synthetic queries have
significant potential.

ple, the playlist with the title “bedtime songs for children”
and description “Gentle, mellow melodies to help the kids
settle down and fall asleep.”, could generate the following
synthetic query: “kids fall asleep”. The results in Table 6
show that such synthetic queries do not improve the effec-
tiveness of Text2Tracks significantly. Overall, our findings
reveal no statistical improvements coming from the four
previously proposed design modifications analyzed here,
answering our third research question negatively. These
results remark the difference between the domains and tasks
where GR is generally applied and the importance of this
experimentation tailored to the music domain.

6. Conclusions
In this paper, we propose to address the problem of prompt-
based music recommendation through the lenses of genera-
tive retrieval and we introduce a generative track retrieval
model Text2Tracks. Given that tracks are items with scarce
text, Text2Tracks learns to generate track IDs directly from a
textual query as an end-to-end differentiable model. We pro-
pose several new strategies to represent track IDs, and show
that the track ID representation strategy is a crucial ingre-
dient to obtain high effectiveness. By leveraging the artist-
track hierarchy and adding special tokens to the vocabulary
we can improve by 31% Hits@10 with respect to the com-
monly used strategy of generating artist and track names.
We then show that for three different playlist datasets with
language inputs Text2Tracks outperforms dense and sparse
retrieval solutions with relative gains ranging between 100–
170% in Hits@10 for the track granularity and 30–100% for
the artist granularity. We also show that more complex
strategies that led to improvements in other domains such
as question answering do not transfer to our problem space.

These findings show that the problem framing that we
propose combined with the novel ID strategies that we in-
troduce for music tracks lead to sizable improvements both
in terms of effectiveness and efficiency of prompt-based mu-
sic recommendation. Also, the non-transferability of tech-
niques that have worked well in other domains highlights
the non-triviality and importance of our experimentation.
Our analysis further strengthens our contribution, showing
that the success of Text2Tracks is due to its ability to cap-
ture the canonicalness and the popularity of tracks, a key
ingredient for the prompt-based recommendation problems.

We believe that this work represents a stepping stone in
the use of generative retrieval in the music domain, lead-
ing to more accurate models that can also greatly simplify
music recommendation pipelines based on indexing and
retrieving vectors. The generative retrieval approach is par-
ticularly appealing in a conversational setup as it paves the
way to a fully fine-tuned conversational recommender that
can generate track IDs jointly with explanations, follow-up
requests, and any other textual content.

In future work, we plan to extend this approach to gen-
erate joint track recommendations and textual responses,
experimenting with decoder-only models such as Llama [3].
We also aim to test the generalizability of our findings to
other media items such as podcasts or books.

References
[1] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,

P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,

et al., Training language models to follow instructions
with human feedback, Advances in neural information
processing systems 35 (2022) 27730–27744.

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, et al., Gpt-4 technical report, arXiv
preprint arXiv:2303.08774 (2023).

[3] H. Touvron, L. Martin, K. Stone, P. Albert, A. Alma-
hairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, et al., Llama 2: Open foundation and fine-
tuned chat models, arXiv preprint arXiv:2307.09288
(2023).

[4] J. FitzGerald, S. Ananthakrishnan, K. Arkoudas,
D. Bernardi, A. Bhagia, C. D. Bovi, J. Cao, R. Chada,
A. Chauhan, L. Chen, et al., Alexa teacher model:
Pretraining and distilling multi-billion-parameter en-
coders for natural language understanding systems,
2022.

[5] G. Penha, C. Hauff, What does bert know about books,
movies and music? probing bert for conversational
recommendation, in: Proceedings of the 14th ACM
conference on recommender systems, 2020, pp. 388–
397.

[6] S. Sanner, K. Balog, F. Radlinski, B. Wedin, L. Dixon,
Large language models are competitive near cold-start
recommenders for language-and item-based prefer-
ences, in: Proceedings of the 17th ACM conference
on recommender systems, 2023, pp. 890–896.

[7] Y. Deldjoo, Z. He, J. McAuley, A. Korikov, S. Sanner,
A. Ramisa, R. Vidal, M. Sathiamoorthy, A. Kasirzadeh,
S. Milano, A review of modern recommender systems
using generative models (gen-recsys), arXiv preprint
arXiv:2404.00579 (2024).

[8] H. Zamani, J. R. Trippas, J. Dalton, F. Radlinski, et al.,
Conversational information seeking, Foundations and
Trends® in Information Retrieval 17 (2023) 244–456.

[9] Y. Deldjoo, J. R. Trippas, H. Zamani, Towards multi-
modal conversational information seeking, in: Pro-
ceedings of the 44th International ACM SIGIR con-
ference on research and development in Information
Retrieval, 2021, pp. 1577–1587.

[10] D. Jannach, A. Manzoor, W. Cai, L. Chen, A survey on
conversational recommender systems, ACM Comput-
ing Surveys (CSUR) 54 (2021) 1–36.

[11] A. T. Chaganty, M. Leszczynski, S. Zhang, R. Ganti,
K. Balog, F. Radlinski, Beyond single items: Exploring
user preferences in item sets with the conversational
playlist curation dataset, in: Proceedings of the 46th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2023, pp. 2754–
2764.

[12] Z. He, Z. Xie, R. Jha, H. Steck, D. Liang, Y. Feng, B. P.
Majumder, N. Kallus, J. McAuley, Large language mod-
els as zero-shot conversational recommenders, in: Pro-
ceedings of the 32nd ACM international conference
on information and knowledge management, 2023, pp.
720–730.

[13] Y. Tay, V. Q. Tran, M. Dehghani, J. Ni, D. Bahri,
H. Mehta, Z. Qin, K. Hui, Z. Zhao, J. Gupta, et al.,
Transformer memory as a differentiable search index,
2022.

[14] Y. Wang, Y. Hou, H. Wang, Z. Miao, S. Wu, Q. Chen,
Y. Xia, C. Chi, G. Zhao, Z. Liu, et al., A neural corpus
indexer for document retrieval, Advances in Neural In-
formation Processing Systems 35 (2022) 25600–25614.

[15] O. Celma, Music Recommendation and Discovery: The
Long Tail, Long Fail, and Long Play in the Digital
Music Space, Springer, 2010.

[16] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary,
R. Majumder, L. Deng, Ms marco: A human generated
machine reading comprehension dataset, 2016.

[17] P. Lops, M. De Gemmis, G. Semeraro, Content-based
recommender systems: State of the art and trends,
Recommender systems handbook (2011) 73–105.

[18] M. Kaminskas, F. Ricci, Contextual music information
retrieval and recommendation: State of the art and
challenges, Computer Science Review 6 (2012) 89–
119.

[19] G. Bonnin, D. Jannach, Automated generation of music
playlists: Survey and experiments, ACM Computing
Surveys (CSUR) 47 (2014) 1–35.

[20] A. Nanopoulos, D. Rafailidis, M. M. Ruxanda,
Y. Manolopoulos, Music search engines: Specifications
and challenges, Information Processing & Manage-
ment 45 (2009) 392–396.

[21] C. Li, H. Hu, Y. Zhang, M.-Y. Kan, H. Li, A conversation
is worth a thousand recommendations: A survey of
holistic conversational recommender systems, arXiv
preprint arXiv:2309.07682 (2023).

[22] X. Wang, X. Tang, W. X. Zhao, J. Wang, J.-R. Wen,
Rethinking the evaluation for conversational recom-
mendation in the era of large language models, arXiv
preprint arXiv:2305.13112 (2023).

[23] N. De Cao, G. Izacard, S. Riedel, F. Petroni, Autoregres-
sive entity retrieval, arXiv preprint arXiv:2010.00904
(2020).

[24] S. Robertson, H. Zaragoza, et al., The probabilistic
relevance framework: Bm25 and beyond, Foundations
and Trends® in Information Retrieval 3 (2009) 333–
389.

[25] C. Van Gysel, Remedies against the vocabulary gap in
information retrieval, arXiv preprint arXiv:1711.06004
(2017).

[26] Z. Ji, Z. Lu, H. Li, An information retrieval ap-
proach to short text conversation, arXiv preprint
arXiv:1408.6988 (2014).

[27] A. Yates, R. Nogueira, J. Lin, Pretrained transformers
for text ranking: Bert and beyond, in: Proceedings of
the 14th ACM International Conference on web search
and data mining, 2021, pp. 1154–1156.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, At-
tention is all you need, 2017.

[29] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2018.

[30] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the
limits of transfer learning with a unified text-to-text
transformer, 2020.

[31] R. Nogueira, J. Lin, A. Epistemic, From doc2query to
doctttttquery, Online preprint 6 (2019) 2.

[32] T. Nguyen, S. MacAvaney, A. Yates, A unified frame-
work for learned sparse retrieval, in: European Con-
ference on Information Retrieval, Springer, 2023, pp.
101–116.

[33] T. Formal, C. Lassance, B. Piwowarski, S. Clinchant,
Splade v2: Sparse lexical and expansion model for
information retrieval, arXiv preprint arXiv:2109.10086
(2021).

[34] N. Reimers, I. Gurevych, Sentence-bert: Sentence em-
beddings using siamese bert-networks, arXiv preprint
arXiv:1908.10084 (2019).

[35] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bo-
janowski, A. Joulin, E. Grave, Unsupervised dense
information retrieval with contrastive learning, arXiv
preprint arXiv:2112.09118 (2021).

[36] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu,
S. Edunov, D. Chen, W.-t. Yih, Dense passage retrieval
for open-domain question answering, arXiv preprint
arXiv:2004.04906 (2020).

[37] O. Khattab, M. Zaharia, Colbert: Efficient and effec-
tive passage search via contextualized late interaction
over bert, in: Proceedings of the 43rd International
ACM SIGIR conference on research and development
in Information Retrieval, 2020, pp. 39–48.

[38] R. Ren, Y. Qu, J. Liu, W. X. Zhao, Q. Wu, Y. Ding, H. Wu,
H. Wang, J.-R. Wen, A thorough examination on zero-
shot dense retrieval, arXiv preprint arXiv:2204.12755
(2022).

[39] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava,
I. Gurevych, Beir: A heterogenous benchmark for
zero-shot evaluation of information retrieval models,
arXiv preprint arXiv:2104.08663 (2021).

[40] Y. Tay, V. Tran, M. Dehghani, J. Ni, D. Bahri, H. Mehta,
Z. Qin, K. Hui, Z. Zhao, J. Gupta, et al., Transformer
memory as a differentiable search index, Advances
in Neural Information Processing Systems 35 (2022)
21831–21843.

[41] M. Bevilacqua, G. Ottaviano, P. Lewis, S. Yih, S. Riedel,
F. Petroni, Autoregressive search engines: Generating
substrings as document identifiers, Advances in Neu-
ral Information Processing Systems 35 (2022) 31668–
31683.

[42] X. Chen, Y. Liu, B. He, L. Sun, Y. Sun, Understand-
ing differential search index for text retrieval, arXiv
preprint arXiv:2305.02073 (2023).

[43] R. Pradeep, K. Hui, J. Gupta, A. D. Lelkes, H. Zhuang,
J. Lin, D. Metzler, V. Q. Tran, How does generative
retrieval scale to millions of passages?, arXiv preprint
arXiv:2305.11841 (2023).

[44] V. Kishore, C. Wan, J. Lovelace, Y. Artzi, K. Q. Wein-
berger, Incdsi: Incrementally updatable document
retrieval (2023).

[45] W. Hua, S. Xu, Y. Ge, Y. Zhang, How to index item
ids for recommendation foundation models, arXiv
preprint arXiv:2305.06569 (2023).

[46] Y. Li, N. Yang, L. Wang, F. Wei, W. Li, Multiview iden-
tifiers enhanced generative retrieval, arXiv preprint
arXiv:2305.16675 (2023).

[47] S. Rajput, N. Mehta, A. Singh, R. H. Keshavan, T. Vu,
L. Heldt, L. Hong, Y. Tay, V. Q. Tran, J. Samost,
et al., Recommender systems with generative retrieval,
arXiv preprint arXiv:2305.05065 (2023).

[48] N. Reimers, I. Gurevych, Sentence-bert: Sentence em-
beddings using siamese bert-networks, in: Proceed-
ings of the 2019 Conference on Empirical Methods in
Natural Language Processing, Association for Compu-
tational Linguistics, 2019. URL: https://arxiv.org/abs/
1908.10084.

[49] D. Sculley, Web-scale k-means clustering, in: Proceed-
ings of the 19th international conference on World
wide web, 2010, pp. 1177–1178.

[50] S. Arora, Y. Li, Y. Liang, T. Ma, A. Risteski, Linear
algebraic structure of word senses, with applications

to polysemy, Transactions of the Association for Com-
putational Linguistics 6 (2018) 483–495.

[51] B. A. Olshausen, D. J. Field, Sparse coding with an
overcomplete basis set: A strategy employed by v1?,
Vision research 37 (1997) 3311–3325.

[52] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary
learning for sparse coding, in: Proceedings of the 26th
annual international conference on machine learning,
2009, pp. 689–696.

[53] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun,
S. Lee, D. Crandall, D. Batra, Diverse beam search: De-
coding diverse solutions from neural sequence models,
arXiv preprint arXiv:1610.02424 (2016).

[54] G. Penha, E. Palumbo, M. Aziz, A. Wang, H. Bouchard,
Improving content retrievability in search with con-
trollable query generation, in: Proceedings of the
ACM Web Conference 2023, 2023, pp. 3182–3192.

[55] S. E. Robertson, S. Walker, Some simple effective ap-
proximations to the 2-poisson model for probabilistic
weighted retrieval, in: SIGIR’94, Springer, 1994, pp.
232–241.

[56] C. Macdonald, N. Tonellotto, Declarative experimen-
tation ininformation retrieval using pyterrier, in: Pro-
ceedings of ICTIR 2020, 2020.

[57] K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu, Mpnet: Masked
and permuted pre-training for language understand-
ing, Advances in Neural Information Processing Sys-
tems 33 (2020) 16857–16867.

[58] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the
limits of transfer learning with a unified text-to-text
transformer, arXiv preprint arXiv:1910.10683 (2019).

[59] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay,
W. Fedus, E. Li, X. Wang, M. Dehghani, S. Brahma,
et al., Scaling instruction-finetuned language models,
arXiv preprint arXiv:2210.11416 (2022).

[60] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean,
Distributed representations of words and phrases and
their compositionality, 2013.

[61] A. Said, A. Bellogín, Comparative recommender
system evaluation: benchmarking recommendation
frameworks, in: Proceedings of the 8th ACM Confer-
ence on Recommender systems, 2014, pp. 129–136.

[62] S. Zhuang, H. Ren, L. Shou, J. Pei, M. Gong, G. Zuc-
con, D. Jiang, Bridging the gap between indexing and
retrieval for differentiable search index with query
generation, arXiv preprint arXiv:2206.10128 (2022).

[63] G. V. Cormack, C. L. Clarke, S. Buettcher, Recipro-
cal rank fusion outperforms condorcet and individual
rank learning methods, in: Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval, 2009, pp. 758–
759.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

	1 Introduction
	2 Related Work
	3 Method
	3.1 Prompt-based Music Recommendation
	3.2 Text2Tracks: ID strategies
	3.2.1 Content-based
	3.2.2 Integer-based
	3.2.3 Learned

	3.3 Text2Tracks: LM backbone
	3.3.1 Training
	3.3.2 Data augmentation
	3.3.3 Inference

	4 Experimental Setup
	5 Results
	5.1 ID strategies (RQ1)
	5.2 Text2Tracks effectiveness (RQ2)
	5.3 Model design choices (RQ3)

	6 Conclusions

